Piecewise Regression through the Akaike Information Criterion using Mathematical Programming

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending the Akaike Information Criterion to Mixture Regression Models

We examine the problem of jointly selecting the number of components and variables in finite mixture regression models. We find that the Akaike information criterion is unsatisfactory for this purpose because it overestimates the number of components, which in turn results in incorrect variables being retained in the model. Therefore, we derive a new information criterion, the mixture regressio...

متن کامل

Exponential Smoothing and the Akaike Information Criterion

Using an innovations state space approach, it has been found that the Akaike information criterion (AIC) works slightly better, on average, than prediction validation on withheld data, for choosing between the various common methods of exponential smoothing for forecasting. There is, however, a puzzle. Should the count of the seed states be incorporated into the penalty term in the AIC formula?...

متن کامل

Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

An improved Akaike information criterion for state-space model selection

Following the work of Hurvich, Shumway, and Tsai (1990), we propose an “improved” variant of the Akaike information criterion, AICi, for state-space model selection. The variant is based on Akaike’s (1973) objective of estimating the Kullback-Leibler information (Kullback 1968) between the densities corresponding to the fitted model and the generating or true model. The development of AICi proc...

متن کامل

An Akaike information criterion for multiple event mixture cure models

We derive the proper form of the Akaike information criterion for variable selection for mixture cure models, which are often fit via the expectation-maximization algorithm. Separate covariate sets may be used in the mixture components. The selection criteria are applicable to survival models for right-censored data with multiple competing risks and allow for the presence of an insusceptible gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2018

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2018.09.168